Development of four-dimensional imaging spectrometers (4D-IS)

نویسندگان

  • Nahum Gat
  • Gordon Scriven
  • John Garman
  • Ming De Li
  • Jingyi Zhang
چکیده

The incentive for the 4D-IS concept was driven by the need to adequately resolve all four dimensions of data (2D spatial, spectral, and temporal) with a single, radiometrically calibrated sensor. Very fast changing phenomena are of interest; including missile exhaust plumes, missile intercept events, and lightning strikes, hypervelocity impacts, etc. Present sensor capabilities are limited to imaging sensors (producing spatial image), spectrometers (that produce a mean signature over an entire field of view with no spatial resolution), radiometers (producing in-band radiance over an entire FOV), or imaging spectrometers (or hyperspectral sensors, tunable filter type, pushbroom scanning, imaging Fourier Transform, Fabry-Perot, or CTHIS type) that produce a data cube containing spatial/spectral information but suffer from the fact that the cube acquisition process may take longer time than the temporal scale during which the event changes. The Computer Tomography Imaging Spectrometer (CTIS) is another sensor capable of 4D data collection. However, the inversion process for CTIS is computationally extensive and data processing time may be an issue in real-time applications. Hence, the 4D-IS concept with its ability to capture a full image cube at a single exposure and provide real time data processing offers a new and enhanced capability over present sensors. The 4D-IS uses a reformatter fiber optics to map a 2D image to a linear array that serves as an input slit to an imaging spectrometer. The paper describes three such instruments, a VNIR, a MWIR, and a dual band MW/LWIR. The paper describes the sensors’ architecture, mapping, calibration procedures, and remapping the FPA plane into an image cube. Real-time remapping software is used to aid the operator in alignment of the sensor is described. Sample data are shown for rocket motor firings and other events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging

Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...

متن کامل

I-42: Advanced Ultrasonic Techniques in The Assessment of Early Human Development

Background: To evaluate the role of 3D, 4D and color Doppler ultrasound (US) in the assessment of early human development. Materials and Methods: 380 women with uncomplicated early pregnancy between 5 and 14 weeks were evaluated by 3D, 4D and color Doppler US. Results: Regression analysis revealed exponential rise of the gestational sac volume with gestational age throughout the first trimester...

متن کامل

Four-dimensional computed tomography (4D CT)--concepts and preliminary development.

Four-dimensional computed tomography (4D CT) is a dynamic volume imaging system of moving organs with an image quality comparable to that of conventional CT. 4D CT will be realized by several technical breakthroughs for dynamic cone-beam CT: (1) a large-area two-dimensional (2D) detector; (2) high-speed data transfer system; (3) reconstruction algorithms; (4) ultra-high-speed reconstruction com...

متن کامل

4D PET: Beyond conventional dynamic PET imaging

  In this paper, we review novel techniques in the emerging field of spatiotemporal 4D PET imaging. We will discuss existing limitations in conventional dynamic PET imaging which involves independent reconstruction of dynamic PET datasets. Various approaches that seek to attempt some or all of these limitations are reviewed in this work, including techniques that util...

متن کامل

Four-dimensional (4D) Motion Detection to Correct Respiratory Effects in Treatment Response Assessment Using Molecular Imaging Biomarkers

Observing early metabolic changes in positron emission tomography (PET) is an essential tool to assess treatment efficiency in radiotherapy. However, for thoracic regions, the use of three-dimensional (3D) PET imaging is unfeasible because the radiotracer activity is smeared by the respiratory motion and averaged during the imaging acquisition process. This motion-induced degradation is similar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006